«Turn On Tomorrow» — «Включи будущее».

Шина (компьютеры). Шины ноутбука


Системная шина - важнейший элемент компьютера :: SYL.ru

Знать строение компьютера обычному пользователю совершенно не обязательно. Но если вы хотите считать себя продвинутым пользователем, который без труда справляется с любой поставленной компьютерной задачей, да к тому же собирается в ближайшем будущем самостоятельно собрать свой первый системный блок, то подобные знания просто необходимы. Функционирование компьютера невозможно без наличия в нем хотя бы одной из перечисленных ниже систем:

  1. Процессора.
  2. Видеоплаты.
  3. Оперативного запоминающего устройства.

Но даже все эти компоненты в совокупности не смогут функционировать. Для этого необходимо организовать между ними связь, посредством которой осуществлялись бы логические и вычислительные операции. Подобные системы связи организуют системные шины компьютера. Поэтому можно сказать, что это еще один незаменимый компонент системного блока.

Системная шина

Системная шина – это совокупность путей передачи данных, которые обеспечивают взаимосвязанную работу между остальными элементами компьютера: процессором, видеоадаптером, жесткими дисками и другими компонентами. Данное устройство состоит из нескольких уровней:

  • механического;
  • электрического или физического;
  • логического и уровня управления.

Первостепенное деление системных шин

Деление шин основывается на нескольких факторах. Первенствующим показателем является месторасположение. Согласно этому показателю шины бывают:

  1. Внутренними, которые обеспечивают взаимосвязь внутренних компонентов системного блока, таких как процессор, ОЗУ, материнская плата. Такая системная шина называется еще локальной, так как служит для связи местных устройств.
  2. Внешними, которые служат для подключения наружных устройств (адаптеров, флеш-накопителей) к материнской плате.

В самом общем случае системной шиной можно назвать любое устройство, которое служит для объединения в одну систему нескольких устройств. Даже сетевые подключения, например, сеть Интернет, в некотором роде является системной шиной.

Самая важная система связи

Вся деятельность, которую мы осуществляем посредством компьютера – создание разнообразных документов, воспроизведение музыки, запуск компьютерных игр - была бы невозможна без процессора. В свою очередь, микропроцессор не смог бы выполнять свою работу, если бы не имел каналов связи с другими важными элементами, такими как ОЗУ, ПЗУ, таймеры и разъема ввода-вывода информации. Именно для обеспечения этой функции в компьютере имеется системная шина процессора.

Быстродействие компьютера

Для функционирования микропроцессора в состав системы каналов связи входит сразу несколько шин. Это шины:

    1. Адреса.
    2. Управления.
    3. Данных.

Количество представленных типов системных каналов связи процессора может быть от одного и более. Причем считается, что чем больше шин установлено, тем больше общая производительность компьютера.

Важным показателем, который также затрагивает производительность ПК, является пропускная способность системной шины. Она определяет скорость передачи информации между локальными системами электронно-вычислительной машины. Рассчитать ее довольно просто. Необходимо лишь найти произведение между тактовой частотой и количеством информации, то есть байт, которая передается за один такт. Так, для давно устаревшей шины ISA пропускная способность составит 16 Мбайт/с, для современной шины PCI Express это значение будет находиться на отметке в 533 Мбайт/с.

Виды компьютерных шин

История компьютерной техники насчитывает уже не одно десятилетие. Совместно с развитием новых компонентов разрабатывались и новые типы системных шин. Самым первым таким каналом связи была система ISA. Этот компонент компьютера обеспечивает передачу данных на довольно медленной скорости, но ее достаточно для одновременного функционирования клавиатуры, монитора и некоторых других компонентов.

Несмотря на то что она была изобретена более полувека назад, данная системная шина активно применялась и в настоящее время, уверенно конкурируя с более современными представителями. Это смогло осуществиться благодаря выпуску большого количества расширений, которые увеличивали ее функционал. Лишь в последние годы процессоры стали выпускаться без использования ISA.

Современные системные шины

Шина VESA стала новым словом в области компьютерной техники. Разработанная специально для непосредственного подключения внешних устройств к самому процессору, она и по сей день обладает высокими показателями скорости передачи информации и обеспечивает высокую производительность процессора.

Но подобная система каналов связи не в состоянии обеспечить надлежащее функционирование микропроцессора. Поэтому она внедряется в систему совместно с ISA и выступает в роли еще одного расширения.

Вот и вся краткая справочная информация, которая должна пролить свет на один из важнейших компонентов современных компьютеров. Следует сказать, что здесь представлена лишь малейшая частичка информации о компьютерных шинах. Полным их изучением занимаются в специальных заведениях на протяжении нескольких лет. Подобная детальная информация необходима непосредственно для разработки новых моделей микропроцессоров или для модернизации уже существующих. Шина PCI является ближайшим конкурентом предыдущего представителя каналов передачи данных. Эта системная шина была разработана компанией Intel специально для производства процессоров собственной торговой марки. Данное устройство способно обеспечить еще большую скорость передачи данных и при этом не нуждается в дополнительных элементах, как в предыдущем примере.

www.syl.ru

Шина (компьютер) - это... Что такое Шина (компьютер)?

Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16). Ниже - обычный 32-битный разъем шины PCI. У этого термина существуют и другие значения, см. Шина.

Компьютерная ши́на (от англ. computer bus, bidirectional universal switch — двунаправленный универсальный коммутатор) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.

Ранние компьютерные шины представляли собой параллельные электрические шины с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины. Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (multidrop) и цепные (daisy chain) топологии.

В случае USB и некоторых других шин могут также использоваться хабы (концентраторы).

История

Первое поколение

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

DEC отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением, и критики предсказывали ему провал.

Первые миникомпьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например в IBM PC, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.

Во многих микроконтроллерах и встраиваемых системах шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска уведомит процессор о готовности новой порции данных для чтения, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair с шиной S-100, заканчивая IBM PC в 1980‑х.

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было непростым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение

Компьютерные шины «второго поколения», например NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость периферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин Peripheral Component Interconneсt (PCI). Компьютеры стали включать в себя Accelerated Graphics Port (AGP) только для работы с видеоадаптерами. В 2004 году AGP снова стало недостаточно быстрым для мощных видеокарт и AGP стал замещаться новой шиной PCI Express

Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980‑х и 1990‑х были изобретены новые шины SCSI и IDE решившие эту проблему и оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.

Шины стали разделять на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.

Третье поколение

Шины «третьего поколения»[какие?] обычно позволяют использовать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие при работе с медленными устройствами, например, приводами дисков. Также они стремятся к большей гибкости в терминах физических подключений, позволяя использовать себя и как внутренние и как внешние шины, например для объединения компьютеров. Это приводит к сложным проблемам при удовлетворении различных требований, так что большая часть работ по данным шинам связана с программным обеспечением, а не с самой аппаратурой. В общем, шины третьего поколения больше похожи на компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.

Современные интегральные схемы часто разрабатываются из заранее созданных частей. Разработаны шины (например Wishbone) для более простой интеграции различных частей интегральных схем.

Примеры внутренних компьютерных шин

Параллельные

  • Проприетарная ASUS Media Bus, использовалась на некоторых материнских платах ASUS с Socket 7 и представляла собой шину ISA в специфическом разьеме, размещенном в одну линию с разьемом шины PCI.
  • CAMAC для измерительных систем (instrumentation systems)
  • Extended ISA или EISA
  • Industry Standard Architecture или ISA
  • Low Pin Count или LPC
  • MicroChannel или MCA
  • MBus
  • Multibus для промышленных систем
  • NuBus или IEEE 1196
  • OPTi local bus, использовалась для ранних материнских плат для Intel 80486
  • Peripheral Component Interconnect или PCI, также PCI-X
  • S-100 bus или IEEE 696, использовалась в Altair и похожих микрокомпьютерах
  • SBus или IEEE 1496
  • VESA Local Bus или VLB или VL-bus, использовалась в основном на материнских платах для 80486 процессоров и была подключена непосредственно к выводам микропроцессора. Однако встречалась и реализация этой шины в сочетании с ЦПУ IBM BL3 (аналог i386SX) и ранними Pentium
  • VMEbus, VERSAmodule Eurocard bus
  • STD Bus для 8-ми и 16-ти битных микропроцессорных систем
  • Unibus
  • Q-Bus

Последовательные

Примеры внешних компьютерных шин

  • Advanced Technology Attachment или ATA (также известна, как PATA, IDE, EIDE, ATAPI) — шина для подключения дисковой и ленточной периферии.
  • SATA, Serial ATA — современный вариант ATA
  • USB, Universal Serial Bus, используется для множества внешних устройств
  • HIPPI HIgh Performance Parallel Interface
  • IEEE-488, GPIB (General-Purpose Instrumentation Bus), HPIB, (Hewlett-Packard Instrumentation Bus)
  • PC card, ранее известная как PCMCIA, часто используется в ноутбуках и других портативных компьютерах, но теряет своё значение с появлением USB и встраиванием сетевых карт и модемов
  • SCSI, Small Computer System Interface, шина для подключения дисковых и ленточных накопителей
  • Serial Attached SCSI, SAS — современный вариант SCSI

Проприетарные

Примеры универсальных компьютерных шин

См. также

Внешние ссылки

dic.academic.ru

Шины компьютера

Опубликовано января 13, 2011 в Основы BIOS, Устройство и принципы работы компьютера

Несомненное преимущество ПК — открытая архитектура, позволяющая в широких пределах изменять конфигурацию компьютера, адаптируя его для решения опре­деленных задач.

Для этого на системной плате есть периферийная шина с несколь­кими разъемами, куда можно вставлять необходимые платы расширения.

В первых персональных компьютерах использовалась шина ISA, которая затем была заменена шиной РСI, а она в свою очередь постепенно вытесняется шиной PCI Express (этот процесс начался в 2005 году). Однако замена стандарта шины компьютера обычно растягивается на несколько лет, поэтому системные платы поддерживают сразу нескольких типов шин.

Шина ISA

Шина ISA была единственной периферийной шиной для компьютеров 1980-х годов, но в начале 1990-х ее возможностей уже явно не хватало для подключения скорост­ных устройств. Поскольку для этой шины было выпущено большое количество плат расширения, она довольно долго существовала параллельно с шиной PCI. Лишь в платах последних лет выпуска разъемов для ISA нет.

Шина PCI

Шина PCI — наиболее популярный способ для подключения различных плат рас­ширения. Она была разработана в 1992 году компанией Intel для замены медленной шины ISA. Следует отметить, что для тех же целей были созданы шины EISA, VLB и MCA, но они оказались менее удачными и уже давно не используются, a PCI успешно применяется и сегодня.

Шина PCI версии 2.0 (1993 год) работает на частоте 33 МГц с максимальной про­пускной способностью 133 Мбайт/с. В поздних модификациях эти показатели были увеличены до 66 МГц и 533 Мбайт/с. Пожалуй, наиболее важное преимуще­ство этой шины — поддержка технологии Plug and Play, позволяющей автоматически настраивать все подключаемые устройства.

В 2004 году появились первые платы с шиной PCI Express, призванной заменить PCI, но в ближайшие годы эти шины будут существовать совместно, поскольку для PCI разработано очень много устройств. Несколько разъемов этой шины вы смо­жете найти практически на всех современных платах.

Шина AGP

В компьютерах 1980-х годов видеоадаптер подключался к шине ISA, в 1990-х го­дах — к более быстрой шине PCI. Однакобурное развитие видеоадаптеров с возмож­ностями обработки трехмерной графики привело к тому, что скоростные ресурсы шины PCI быстро исчерпались. В связи с этим в 1996 году компания Intel предста­вила шину AGP, предназначенную специально для подключения видеоадаптера.

Шина AGP — это скоростной вариант PCI, специально оптимизированный для трехмерных графических ускорителей. Первая версия шины работала на частоте 66 МГц с пропускной способностью 266 Мбайт/с (режим AGP 1х) или 533 Мбайт/с (режим AGP 2х). Позже появился режим AGP 4х, а затем и AGP 8х, в котором скорость обмена данными составляла уже 2 Гбайт/с.

В новых компьютерах разъем AGP отсутствует, а видеоадаптер устанавливается в слот PCI Express.

Шина: PCI Express

Шина PCI обладала неплохими для своего времени характеристиками и довольно долго была основной для подключения различных плат расширения: сетевых, звуковых плат, модемов и др. Однако появились быстродействующие RAID-кон­троллеры, сетевые платы Gigabyte Ethernet и другие устройства, и оказалось, что возможностей шины PCI уже явно не хватает. Это особенно заметно при одновре­менной работе двух и более подобных плат.

Системные платы с шиной PCI Express, созданные на чипсете Intel 915, впервые появились в 2004 году. Несколько позже вышли чипсеты с поддержкой PCI Express от nVidia, AMD, SIS, VIA и других разработчиков. Благодаря высоким скоростным характе­ристикам эта шина позволяет заменить не только PCI, но и AGP; именно видео­адаптеры стали первыми устройствами, для которых производители перешли на массовое использование шины PCI Express.

Шина PCI Express состоит из контроллера и так называемых линий, с помощью которых передается информация. Линия (Lane) — это две пары проводников, у ка­ждой из которых скорость передачи данных 250 Мбайт/с. Таким образом, пропу­скная способность одной линии составляет 500 Мбайт/с, что значительно превы­шает аналогичный показатель шины PCI, кроме того, линии независимы друг от друга, и это позволяет использовать каждую из них на полную мощность.

Чтобы получить еще большую скорость, объединяют нескольких линий в одном разъеме, например видеоадаптер подключают к разъему PCI Express 16х, со­стоящему из 16 линий, что теоретически обеспечивает пропускную способность до 8 Гбайт/с.

В 2007 году была утверждена новая версия шипы PCI Express 2.0. В ней скорость передачи данных увеличена в два раза и составляет 1 Гбайт/с для каждой линии, что позволяет получить пропускную способность до 16 Гбайт/с для разъема PCI Express 16х. На сегодняшний день  все чипсеты поддерживают PCI Express 2.0.

Современная системная плата обычно имеет следующие разъемы:

1. один или два разъема PCI Express 16х для подключения видеоадаптера и других скоростных устройств;

2. несколько разъемов PCI Express 1х для подключения плат расширения нового образца;

3. несколько разъемов PCI для подключения обычных PCI-устройств.

Шина USB

Интерфейс USB сегодня стал общепринятым стандартом для подключения к сис­темному блоку различных внешних устройств. В старых компьютерах было всего два разъема USB, расположенных на задней панели системного блока. У современ­ных компьютеров их может быть шесть, восемь и более, причем располагаются они как на задней, так и на передней панели системного блока.

Преимущества интерфейса USB в том, что подключать или отключать устройства можно в процессе работы компьютера, причем настраиваются они операционной системой автоматически. С появлением стандарта USB 2.0 значительно возросла и скорость обмена данными, которая может достигать 480 Мбит/с.

Многие современ­ные системные платы поддерживают загрузку компьютера на уровне BIOS с USB- устройств, в качестве которых удобно использовать flash-диски.

dammlab.com

Какие бывают шины в современном компьютере?

А внутрях у ей неёнка. Она ей думает...

А. и Б. Стругацкие "Сказка о тройке".

Собственно, поводом для данной статьи послужила некоторая запутанность терминологии, связанной с архитектурой современных компьютеров. Шин становится все больше, чипсеты все интегрированнее и что есть где, разобраться все сложнее. Так что окинем беглым взглядом современную архитектуру PC.

Итак, всем известно, что основой любого современного персонального компьютера, то бишь PC, является процессор. Он же CPU, он же "камень", он же "проц". Основная задача процессора - обработка данных в соответствии с заданными правилами. То есть подавая на процессор два числа и команду "сложить", мы получим в результате сумму этих чисел. И глубже в дебри того, как именно это происходит, лезть не будем. Но естественным образом встает вопрос, откуда процессор берет данные и куда они потом отправляются. Для этих операций требуется интерфейс с устройствами ввода-вывода. И это именно то, для чего нужна так называемая материнская или системная плата. На плате расположен чипсет (chipset) или, попросту говоря, набор микросхем, обеспечивающий взаимодействие процессора с окружающей действительностью (устройствами ввода-вывода и хранения информации). Собственно говоря, можно интегрировать чипсет вместе с процессором на один полупроводниковый кристалл и получить так называемую однокристальную систему (system-on-chip), но пока что в области PC это не выгодно, что убедительно продемонстрировал Intel, отказавшись от разработки Timna.

По современным архитектурным канонам чипсет состоит из двух микросхем (число два тоже, в общем-то, определяется соотношением цены и степени интегрированности). Вполне возможно, что в скором будущем эти два кристалла сольются в экстазе (как будет видно позже, к тому все и идет), но пока экономически и технологически выгоднее их разделять. Две составляющие чипсета называются "северным мостом" (он же Host Bridge) и "южным мостом" (PCI-to-ISA Bridge). Северный мост непосредственно соединен с процессором специальной шиной, которая называется системной (эта же шина носит гордое имя FSB - Front side bus). С другой стороны северный мост соединен с оперативной памятью (для чего содержит контроллер памяти). С третьей стороны он соединяется с шиной AGP (тоже при помощи соответствующего контроллера) и таким образом обеспечивает вывод на экран. И, наконец, с четвертой стороны северный мост связан с шиной PCI. Южный мост находится по другую сторону шины PCI и общение с процессором и памятью у него происходит через эту шину и северный мост. По крайней мере, так было до недавнего времени - то есть до Intel BX и VIA KT133 включительно. Южный мост обеспечивает работу шины ISA (и устройств, работающих через ISA - клавиатуры, мыши и портов), IDE (жесткие диски, CD-ROM и прочее), USB и взаимодействие с BIOS'ом. То есть, практически, северный мост обеспечивает работу внутрисистемных ресурсов, а южный - периферии. Схема системы с подобной архитектурой на рис. 1.

Однако, начиная с чипсета i810 у Intel и VIA Apollo Pro266/KT266 у VIA (Ali, кстати, тоже обещает в ближайших чипсетах), была введена так называемая хабовая (от слова Hub) архитектура (рис. 2).

Северный мост был переименован в GMCH (Graphics and Memory Controller Hub), а южный - в ICH (Input/Output Controller Hub). При этом основная раскладка ресурсов осталась прежней, но шина PCI полностью отошла к ICH, а передача данных между хабами осуществлялась по выделенной высокоскоростной шине. Зачем это было сделано, опять-таки, речь ниже.

Теперь рассмотрим отдельные шины подробнее. Начнем, естественно, с системной шины. Итак, шина FSB соединяет процессор и северный мост и имеет иширину 64 бита или 8 байт (здесь и дальше имеется в виду ширина той части шины, по которой передаются данные). У Intel эта шина называется AGTL+, у AMD - EV6. Частота шины FSB - это именно та частота, которая умножается на коэффициент умножения процессора и определяет его рабочую частоту. Так, номинальная частота FSB для процессоров Celeron - 66 МГц, для Pentium III - 100 или 133 МГц, для последних процессоров AMD (Athlon, Duron) - 100 МГц (но поскольку спецификация EV6 предусматривает передачу данных по фронту и спаду синхроимпульса, то эффективная частота в этом случае получается 200 МГц).

Еще одна важная (скорее, даже основная) характеристика любой шины - максимальная пропускная способность. Она определяет максимальный объем данных, который можно передать по шине в единицу времени, и получается простым умножением разрядности на частоту. Соответственно, для Celeron (неразогнанного) пропускная способность FSB будет 533 Мб/с, для PIII - 800 или 1066 Мб/с, для Athlon - 1600 Мб/с. Естественно, полностью потенциал шины в реальных системах никогда не реализуется, поскольку любой запрос данных от процессора предусматривает некоторую задержку перед их передачей.

Шина памяти. Соединяет северный мост (контроллер памяти) и память. Тоже имеет ширину 64 бита (для процессоров класса Pentium и выше, у 486 было 32 бита). До недавнего времени частота шины памяти и FSB всегда совпадала. Однако в современных чипсетах можно устанавливать для этих шин различные рабочие частоты. Скажем, чипсет VIA Apollo Pro 133A позволяет устанавливать частоту шины памяти на 33 МГц больше или меньше частоты FSB (то есть 66, 100 и 133 МГц). Чипсет VIA KT133 (под Athlon) позволяет ставить частоты 100 или 133 МГц. Аналогичная ситуация и с последними чипсетами от Intel. Таким образом, для типичной на сегодня памяти стандарта PC100 SDRAM мы получаем пропускную способность 800 Мб/с, для PC133 - 1066 Мб/с. Реальный поток данных для шины памяти будет, минимум, раза в два (а скорее, в 5-6 раз) меньше в силу различных задержек, связанных с механизмом работы схем памяти. Собственно говоря, именно это перманентное несовпадение пропускной способности шин FSB, памяти и реального быстродействия памяти и двигало технологический прогресс: DRAM->FPM DRAM ->EDO DRAM ->PC66 SDRAM -> PC100 SDRAM -> PC133 SDRAM.

Один из вариантов решения проблемы был предложен компанией Rambus с ее печально знаменитой DRDRAM (Direct Rambus DRAM). Эта память предусматривала 16-разрядную шину данных и работу на частоте 400 МГц по обоим фронтам синхросигнала. Соответственно, эффективная частота получалась 800 МГц, а пропускная способность - 1600 Мб/с (для одного канала Rambus, а их может быть несколько). Однако, несмотря на радужные перспективы, Rambus не получила распространения (в основном, по экономическим и, опять же, технологическим соображениям) и нынче все больше занимается судебными искми, а не технологиями. Единственный чипсет i820, поддерживающий DRDRAM, медленно, но верно ползет на свалку истории. Второй вариант - DDR SDRAM в стандарте PC266. То есть та же самая SDRAM, но работающая по обоим фронтам 133 МГц синхросигнала. Соответственно, пропускная способность 2.1 Гб/с. Ну и реальный поток данных побольше, чем у SDRAM. Сейчас VIA объявила первые массовые DDR чипсеты VIA Apollo Pro266/KT266, так что скоро посмотрим, что будет в реальности.

Следующая шина - шина AGP. Расшифровывается это как Accelerated Graphics Port. Разработан стандарт APG был фирмой Intel, и, соответственно, впервые поддержка AGP появилась в чипсете Intel BX. С появлением APG видеокарте фактически была выделена собственная скоростная шина к памяти (контроллер AGP находится в северном мосту, контроллер памяти - там же). Сделано это было, чтобы освободить шину PCI от потока данных, требующегося для работы появившихся примерно в то же время 3D-ускорителей. Шина AGP 32-разрядная и работает на частоте 66 МГц. Соответственно ее пропускная способность - 266 Мб/с. Затем последовали спецификации AGP 2X и 4X, обеспечивающие пропускные способности 532 Мб/с и 1064 Мб/с. AGP позволяет видеокарте напрямую работать с оперативной памятью и использовать часть ее в качестве текстурной памяти. Особенно это актуально для видеоконтроллеров, интегрированных непосредственно в северный мост (например, i810). Кстати, чипсеты, поддерживающие частоту FSB 133 МГц "по-настоящему", отличаются от тех, которые просто можно разогнать до 133 МГц тем, что используют при тактировании AGP переменный коэффициент умножения и частота APG остается равной 66 МГц. В остальном же смотрите статью Макса Курмаза "AGP: полное руководство".

Из шин, поддерживаемых северным мостом, у нас остается только шина PCI (Peripherial Component Interconnect). Тоже разработана Intel и служит для подключения устройств расширения (звук, сеть и прочее). Шина 32-разрядная, работает на частоте 33 МГц (тоже должна обеспечиваться переменным делителем). Соответственно, пропускная способность - 133 МГц. Шина PCI поддерживает режим работы Bus Mastering. То есть PCI-устройство может захватить управление шиной и организовать передачу данных без участия процессора. В мостовой архитектуре чипсета поддержка PCI обеспечивалась северным мостом, в хабовой за нее отвечает южный. В первом случае кроме передачи данных от PCI-устройств, шина PCI выполняла еще одну задачу - обеспечивала связь между северным и южным мостами (то есть, фактически, между оперативной и дисковой памятью).

В хабовой архитектуре эта связь осуществляется по специальной шине. Intel ввела ее, начиная с чипсета i810, VIA - со свежеобъявленных Apollo Pro266/KT266, ALi тоже намеревается последовать их примеру в ближайших чипсетах. У Intel эта шина называется Intel Hub Interface, у VIA - V-Link. С разрядностью и рабочей частотой ситуация не совсем понятна, поскольку обе компании особо не распространяются о спецификациях. Точно известна только пропускная способность - в обоих случаях 266 Мб/с.

Далее следует шина IDE (integrated drive electronics), служащая для связи с внешними накопителями - винчестерами, CD-ROM и т.д. Подключение устройств осуществляется 40- или 80-жильным кабелем, тактовая частота 16.5 МГц (половина частоты PCI), контроллер расположен в южном мосту (в случае ATA-100 может использоваться внешний контроллер). Соответственно, пропускная способность в режиме PIO Mode 4 - 16.5 Мб/с, в режиме Ultra DMA33 - 33 Мб/с (работа по обоим фронтам), Ultra DMA66 - 66 Мб/с (используется 80-жильный кабель, в котором сигнальные провода экранированы друг от друга земляными, что позволило существенно улучшить временные параметры сигнала) и, наконец, новомодный Ultra DMA100 - 100 Мб/с. Тут, как обычно, максимальная пропускная способность недостижима, и в любом случае скорость передачи ограничивается скоростью линейного чтения с диска. Единственный случай, когда скорость может приближаться к максимальной - если данные берутся непосредственно из буфера винчестера.

Такова, вкратце, архитектура современного компьютера. Мы еще не коснулись шин ISA, USB и прочих внешних устройств, но эти вопросы не так принципиальны. А оценить путь данных и возможные узкие места на этом пути вы теперь можете сами.

Константин АФАНАCЬЕВ,[email protected]

www.kv.by

Шина (компьютеры) - это... Что такое Шина (компьютеры)?

Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32-битным разъемом шины

Компьютерная ши́на (от англ. computer bus, bidirectional universal switch — двунаправленный универсальный коммутатор) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка—точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов для физического подключения устройств, карт и кабелей.

Ранние компьютерные шины представляли собой параллельные электрические шины с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины. Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (multidrop) и цепные (daisy chain) топологии. В случае хабы.

История

Первое поколение

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя, компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

DEC отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением и критики предсказывали ему провал.

Первые миникомпьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например в IBM PC, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.

Во многих микроконтроллерах и встраиваемых системах шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска уведомит процессор о готовности новой порции данных для чтения, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair с шиной S-100 (англ.), заканчивая IBM PC в 1980‑х.

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было не простым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение

Компьютерные шины «второго поколения», например NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила ускорять скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость переферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин (PCI). Компьютеры стали включать в себя (AGP) только для работы с видеоадаптерами. В 2004 году AGP снова стало недостаточно быстрым для мощных видеокарт и AGP стал замещаться новой шиной PCI Express

Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980‑х и 1990‑х были изобретены новые шины IDE решившие эту проблему и оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.

Шины стали разделять на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.

Третье поколение

Шины «третьего поколения» в настоящее время[когда?] находятся в процессе выхода на рынок, включая компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.

Современные интегральные схемы часто разрабатываются из заранее созданных частей, так называемых «intellectual property» или IP. Разработаны шины (например Wishbone) для более простой интеграции различных частей интегральных схем.

Примеры внутренних компьютерных шин

Параллельные

  • Проприетарная ASUS Media Bus, использовалась на некоторых материнских платах ASUS с Socket 7
  • CAMAC для измерительных систем (instrumentation systems)
  • или EISA
  • или ISA
  • Low Pin Count или LPC
  • MicroChannel или MCA
  • MBus
  • Multibus для промышленных систем
  • NuBus или IEEE 1196
  • OPTi local bus, использовалась для ранних материнских плат для Intel 80486
  • или PCI, также PCI-X
  • S-100 bus или IEEE 696, использовалась в Altair и похожих микрокомпьютерах
  • SBus или IEEE 1496
  • VESA Local Bus или VLB или VL-bus
  • STD Bus для 8-ми и 16-ти битных микропроцессорных систем
  • Unibus
  • Последовательные

    Примеры внешних компьютерных шин

    • или ATA (также известна, как PATA, IDE, EIDE, ATAPI) — шина для подключения дисковой и ленточной переферии.
    • HIPPI HIgh Performance Parallel Interface
    • IEEE-488, GPIB (General-Purpose Instrumentation Bus), HPIB, (Hewlett-Packard Instrumentation Bus)
    • , ранее известная как PCMCIA, часто используется в ноутбуках и других портативных компьютерах, но теряет своё значение с появлением USB и встраиванием сетевых карт и модемов
    • Serial Attached SCSI, SAS — современный вариант SCSI

    Проприетарные

    Примеры универсальных компьютерных шин

    См. также

    Внешние ссылки

    Wikimedia Foundation. 2010.

dic.academic.ru


Смотрите также